

(12) United States Patent

(10) **Patent No.:**

US 7,488,407 B2 Feb. 10, 2009

Shepodd et al.

(45) **Date of Patent:**

(54) CASTABLE THREE-DIMENSIONAL STATIONARY PHASE FOR ELECTRIC FIELD-DRIVEN APPLICATIONS

U.S. PATENT DOCUMENTS

(75) Inventors: **Timothy J. Shepodd**, Livermore, CA (US); Leroy Whinnery, Jr., Danville,

9/2000 Schure et al. 210/635 2001/0008212 A1* 7/2001 Shepodd et al. 204/451

References Cited

OTHER PUBLICATIONS

CA (US); William R. Even, Jr., Livermore, CA (US)

> Peters et al, Analytical Chemistry 1997, 69, pp. 3646-3649.* CAS Registry entry for 2-Propenoic acid, 2-methyl-, 1,1'-(1,2ethanediyl) ester, 2008.*

(73) Assignee: Sandia Corporation, Livermore, CA (US)

* cited by examiner

(56)

Notice: Subject to any disclaimer, the term of this

> Primary Examiner—Kaj K Olsen (74) Attorney, Agent, or Firm—Donald A. Nissen

patent is extended or adjusted under 35 U.S.C. 154(b) by 892 days.

ABSTRACT

Appl. No.: 10/969,134

Filed:

(22)

(65)

Prior Publication Data

US 2005/0051430 A1

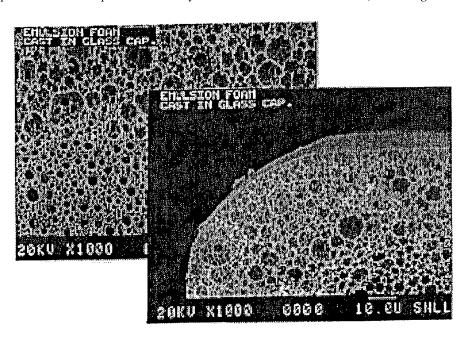
Oct. 19, 2004

Mar. 10, 2005

Related U.S. Application Data

(60) Division of application No. 09/796,762, filed on Feb. 28, 2001, now Pat. No. 6,846,399, which is a continuation-in-part of application No. 09/310,465, filed on May 12, 1999, now abandoned.

(51) **Int. Cl.** F04F 11/00 (2006.01)


(52) **U.S. Cl.** **204/600**; 204/450

(58) Field of Classification Search 204/600, 204/601, 605, 450, 451, 455

See application file for complete search history.

A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.

1 Claim, 1 Drawing Sheet

